갤러리 이슈박스, 최근방문 갤러리
연관 갤러리
월드 오브 워쉽 갤러리 타 갤러리(0)
이 갤러리가 연관 갤러리로 추가한 갤러리
0/0
타 갤러리 월드 오브 워쉽 갤러리(0)
이 갤러리를 연관 갤러리로 추가한 갤러리
0/0
개념글 리스트
1/3
- 싱글벙글 사람 살라고 지은 집 ㅇㅇ
- 다시보는 부산 흥보 웹툰 정동장애
- [엘마갤요리대회] 유사 약초 큐브 젤리 만들기 ㅇㅇ
- 1만 년 신비 담은 용천동굴 영상으로 공개 ㅇㅇ
- 수열 31 게임 sgtHwang
- 싱글벙글 남친이랑 싸우고 머리짧게자른 여자 ㅇㅇ
- 싱글벙글 타임지 선정 영화속 최악의 기업 TOP10 배터리형
- "아기에게 몹쓸 짓"...호주 밖으로 도망간 커피 테러범, 못 잡나? ㅇㅇ
- 펌) 5회말 니퍼트 선물 증정식 모음 ㅇㅇ
- 볼보는 중국차다 ㅇㅇ
- 레고 34만개로 만든 슈퍼카, 진짜 달렸다.jpg ㅇㅇ
- 추석극장가 CJ희망 <베테랑2>근황....jpg ㅇㅇ
- 러브러브 욕을 하면 안되는 이유.manhwa comma
- 갤럭시에 대한 한국인만 모르는 해외인식 ㅇㅇ
- 중형 슬라이드의 맛 앙리까부리쑝
베트남에서 가장 존경하는 삼국지 인물.JPG
사섭삼국지 시대 제일 남쪽끝 교주를 다스렸던 인물임지금으로 치면 홍콩, 마카오, 광저우, 베트남 수도 하노이. 중북 남부 + 베트남 북부.베트남에 한자를 도입하고삼국지 시대 중국은 난세여서 매일 전쟁터였는데 교주는 평화로웠음. 피난민들이 따뜻하고 쌀국수 맛있는 교주로 피난을 많이 옴사섭은 성품도 따뜻해서 그들을 잘 대해주었다함또 유교를 그들에게 강제로 주입하지 않고, 토착민들이 믿던 불교도 수용해주었다 함베트남에서 사왕으로 불리우고, 대왕 칭호 내림.한국 세계사 교과서에도 나옴. 베트남어로는 시니엡.베트남의 사섭 사당교주에서는 황제급 포스유비도 최후에는 교주로 도망가려 헀음. 창오가 교주 지역물론 적벽대전 대승하고 촉 세웠지만게임에서도 제일 남쪽 변방에 위치함중앙보다 변방, 지방에서 플레하는걸 선호하면 하기 좋음
작성자 : ㅇㅇ고정닉
싱글벙글 제논의 역설
먼 고대 그리스, 제논이라는 백수 건달이 살고있었다.제논 : ㅎㅇ시민 : ?제논 : 님 어제 올림픽 달리기 시합봄?시민 : 아 그거 개쩔었죠 ㅎㅎ 근데 왜요?제논 : 그거 사실 님 눈의 착각임 ㅋ 아무도 결승선에 못도달함시민 : ? 뭐래 시발제논 : 아 님아 들어보셈. 달리기 선수가 결승선에 도달하려면일단 출발선과 결승선의 1/2 지점에 도착해야겠죠?시민 : ㅇㅇ..제논 : 그러면 다시 거기에서 결승선까지의 1/2 지점까지도달 해야겠죠? 도달했으면 다시 또 1/2 지점까지 도달해야되겠죠? 또 다시 결승선까지 1/2... 또 1/2... 하면결국 무한히 가까워지기만 할뿐 도달하진 못하는거 아닙니까.이렇게 말입니다. 그러면 아무리 무한한 시간이 흘러달리고 달린다해도 결승선에는 도달 못하겠죠?제논 : 결국 결승선엔 죽었다 깨어나도 못도달함 ㅋㅋ님이 어제 잘못본거임 PPAP~ ㅋㅋㅋㅋㅋ시민 : 아 뭐래 시발 꺼져제논 : 에베베베베~ 반박해봐! 못하쥬 ㅋㅋㅋㅋㅋㅋㅋ꼬우면 반박 해보시던가 줫밥새끼야 ㅋㅋㅋㅋㅋ시민 : (ㅂㄷㅂㄷ....)이 제논의 역설은 직관적으로는 반론이 되지만 논리적으로는 반론이 불가능했다.결국 제논은 시민들을 궤변으로 현혹시킨다는 이유로 사형당한다.거두절미하고 왜 그당시에는 제논의 역설을 해결하지 못했는가?답은 '유한을 무한번 더하면 유한이 되는가?' 에 대한 대답을 하지 못했기 때문이다.그리스 시대에 길이는 무조건 유한한 것으로 취급되었다. 점 역시 길이로 취급되었다.위의 나온 제논의 역설을 수식으로 정리하면 1/2 + 1/4 + 1/8 + 1/16............ = ? 이다.위의 식을 현대수학으로 계산하면 1 이고 이는 그당시에도 직관적으로는 파악하고 있던 사실이였다.하지만 유한한 수를 무한번 더하면 무한이 나와야 한다는것 역시 당시의 상식이였다.두 상식의 충돌을 해결하지 못한채 시간이 흘러 흘러 2천년뒤무한급수라는 개념을 도입해 이를 설명하려 시도한다.뉴턴 :증명 끝 ㅎㅎ시민 : ? 저 문관데요;;뉴턴 : 에효 문돌이 ㅉㅉ 알기쉽게 그림으로 설명해줄게짜잔. 종이의 반, 그 반의 반, 그 반의 반의 반..... 이렇게 무수히 더하면 종이 한장이 되지? 자 어때 깔끔하지?시민 : 음... 알거같긴한데 정확히 왜 저러는거에요?뉴턴 : 그야 한없이 작은수를 끊임없이 더하니 결국 유한이 되는거지 ㅉㅉ 문돌이 수준수학자 : 님 작은수를 한없이 더하면 어떤수에 그냥 계속 가까워지는거 아니에요?1/2 = 1/21/2 + 1/4 = 3/41/2 + 1/4 + 1/8 = 7/8.....................이렇게 한없이 1에 가까워지는거지 결코 1은 되지 않는거 아닙니까?뉴턴 : 뭐래, 위에 종이 안보이냐 병신아?수학자 : 아니 님 종이 뒤질때까지 계속 오려서 함 붙여보세요. 한없이 가까워질 망정 종이 한장은 결코 완성못하는게 당연한 거 아니에요? 우주가 끝날때까지 계속 붙여도 조그마한 조각정도는 하나 남을것 아닙니까?뉴턴 : 말 존나 많네 느금마수학자 : ????그후 200년이 더흘러 칸토어에 의해서 완전히 해결된다.칸토어 : 애초에 제논이 세운 전제 자체가 잘못됬음. 우리가 셀 수있는 수의 체계와 셀 수없는 수의 체계를 분리해서 봐야함.길이는 셀 수없는 수에 속하니 길이를 셀 수 있는 수로 취급한 전제부터가 잘못됨수학자 : 뭔소리야 ㅅㅂ 한국말해라칸토어 : 자 쉽게 설명해줄게이 그림에서 1,2,3.....에 해당하는 숫자 점이 많아아니면 그냥 수직선위에 찍혀있는 점의 개수가 많아?수학자 : 당연히 수직선 위에 찍혀있는 점의 개수지. 수없이 많으니까...칸토어 : 아 그래? 그러면 이 수직선의 길이가 무한할때 전체적으로 보면 어느게 더 많을까?수학자: 음..... 둘다 무한개지만 그냥 찍혀있는 점의 개수가 더 많을 것 같긴한데...... 칸토어 : 예아~ 니 말이 맞다 이기. 그리고 내가 그거 수학적으로 엄밀히 “증명”함결국 '무한은 다같은 무한이 아니라 무한 사이에도 서열이 있다.'이 소리야.수학자 : 헐 진짜? 대박쩌러멍미부랄떨려칸토어 : ㅇㅇ 이를 바로 제논의 역설에 적용할 수 있음달리기 선수가 달려가는 길이인 '선분'은 '점'이 무한개 모인거지?근데 선분은 아무리 쪼개도 쪼개도 계속 무한임.왜냐하면 선분에 포함되어있는 점의 수는 자연수의 개수보다더 서열이 높은 무한이거든. 둘이 아예 다른 종류인거야.수학자 : ㅇㅎ. 그럼 선분에 있는 점을 우리가 하나,둘,셋.... 이렇게 세는것 자체가 불가능하다는거네?시민 : 아하! 너무 많아서 세는것 자체가 의미가 없다는 소리군요?칸토어 : 땡! '아예 셀 수가 없어' 점들은 애시당초 셀 수있는 개념이 아니라니까?님 흐르는 물에 물방울이 몇개인지 셀 수 있음?애초에 선분이란건 자연수랑 아예 개념이 다른거야. 둘다 무한이지만 종류가 다른 무한이야.수학자 : 그렇다면 제논의 역설은....칸토어 : ㅇㅇ 셀 수 없는 선분 자체를 셀 수 있는것 처럼 취급하니 이런 사단이 일어난거야.애시당초 전제부터 틀렸음! 제논의 역설은 시작부터 잘못됨. “논.파.완.료”시민 : 별로 와닿지가 않는데요.수학자 : 수학이란 원래 그렇습니당 ㅎㅎ이렇게 2500년의 세월이 흘러 제논의 역설은 논파된다.
작성자 : kangaroo2529고정닉
차단하기
설정을 통해 게시물을 걸러서 볼 수 있습니다.
댓글 영역
획득법
① NFT 발행
작성한 게시물을 NFT로 발행하면 일주일 동안 사용할 수 있습니다. (최초 1회)
② NFT 구매
다른 이용자의 NFT를 구매하면 한 달 동안 사용할 수 있습니다. (구매 시마다 갱신)
사용법
디시콘에서지갑연결시 바로 사용 가능합니다.